ON LIAPUNOV STABILITY IN THE CRITICAL CASE OF A CHARACTERISTIC EQUATION WITH AN EVEN NUMBER OF ROOTS EQUAL TO ZERO

(OB UBTOIOBIVOAII PO LIAPUNOVU V RRIIICREAKCM

PMM Vol.29, № 1, 1965, pp.173-175
M.S. SAGITOV and A.N. FILAATOV
(Tashkent)
(Received September 24, 1964)

1. We shall consider the system of equations
$\frac{d x_{s}}{d t}=p_{s 1} x_{1}+\ldots+p_{s, n+2 m} x_{n+2 m}+X_{s}\left(x_{1}, x_{2}, \ldots, x_{n+2 m}\right)\binom{s=1, \ldots, n+\stackrel{(1.1}{2 m}}{2 m<n}$
with assumption that the characteristic equation
has an even number $2 m(m \geqslant 1)$ of roots equal to zero corresponding to which there are m groups of solution of the first approximation equations

$$
\begin{equation*}
\frac{d x_{s}}{d t}=p_{s 1} x_{1}+\ldots+p_{s, n+2 m} x_{s, n+2 m} \quad(s=1, \ldots, n+2 m) \tag{1.3}
\end{equation*}
$$

We shall assume that the roots of Equation (1.2) which are not equal to zero have negative real parts, and that the $X_{s}\left(X_{s}(0,0, \ldots, 0) \equiv 0\right)$ are holomorphic functions of the quantities $x_{1}, x_{2}, \ldots, x_{n+2 m}$; the series expan. sions of these functions do not have any terms of order inferior to the second.

The purpose of the problem is the determination of the conditions for which the solution

$$
\begin{equation*}
x_{1}=x_{2}=\ldots=x_{n+2 m}=0 \tag{1.4}
\end{equation*}
$$

of Equations (1.1) is stable or unstable, according to Liapinov. The case which occurs when Equation (1.2) has two roots equal to zero ($m=1$) has been studied at length by Liapunov [1] and Kamenkov [2].

Kamenkov has also investigated in [2] the case in which the characteristic equation has: p roots equal to zero, to which correspond p groups of solutions, $2 q$ purely imaginary roots, and also r roots with negative real parts (the sum $p+2 \boldsymbol{p}+r$ is equal to the order of the system). We shall mention also that the case in which the characteristic equation has κ roots equal to zero, corresponding to which there are $\kappa-1$ groups of solutions, and where k is the order of the system, has been considered in [3].

In this paper, following the ideas of [1], we study the case in which the characteristic equation (1.2) has any even number of roots equal to zero ($m>1$). Some restrictions are imposed on the function X_{a} and are mentioned below.
2. For the assumptions made, and by means of a few constant coefficient inear transformations, the system (1.1) can be written as

$$
\begin{align*}
& \frac{d z_{2 k-1}}{d t}=z_{2 k}+Z_{2 k-1}\left(z_{1}, \ldots, z_{2 m} ; x_{1}, \ldots x_{n}\right) \\
& \frac{d z_{2 k}}{d t}=Z_{2 k}\left(z_{1}, \ldots, z_{2 m} ; x_{1}, \ldots, x_{n}\right) \quad\binom{k=1, \ldots, m}{s=1, \ldots, n} \tag{2.1}\\
& \frac{d x_{s}}{d t}=p_{s 1} x_{1}+\ldots+p_{s n} x_{n}+X_{s}\left(z_{1}, \ldots, z_{2 m} ; x_{1}, \ldots, x_{n}\right)
\end{align*}
$$

Without loss of generality, it can always be assumed (*) that $Z_{2 k-1} \equiv 0$ and $X_{s} \equiv 0$, when $z_{2}=z_{4}=\ldots=z_{2 m}=x_{1}=x_{2}=\ldots=x_{n}=0$.

It is clear that the solution

$$
\begin{equation*}
z_{1}=z_{2}=\ldots=z_{2 m}=x_{1}=x_{2}=\ldots=x_{n}=0 \tag{2.2}
\end{equation*}
$$

of the system (2.1) corresponds to the solution (1.4) of the system (1.1). We spall confine ourselves to the investigation of the stability of Equation (2.2) by assuming that the functions Z_{ak} and $X_{\text {a }}$ have the form

$$
\begin{gather*}
Z_{2 k}=\sum_{\mu=1}^{m} a_{2 \mu}^{(2 h)} z_{2 \mu}^{2}+\sum_{\mu=1}^{m} P_{2 \mu}^{(2 k)}\left(x_{1}, \ldots, x_{n}\right) z_{2 \mu}+Q^{(2 k)}\left(x_{1}, \ldots, x_{n}\right)+ \\
\\
+\sum_{s=1}^{n} x_{8} \varphi_{s}{ }^{(2 k)}\left(z_{1}, z_{3}, \ldots, z_{2 m-1}\right)+R^{(2 k)}\left(z_{1}, \ldots, z_{2 m} ; x_{1}, \ldots, x_{n}\right) \\
X_{s}=\sum_{i=1}^{n} x_{i} \varphi_{s i}\left(z_{1}, z_{3}, \ldots, z_{2 m-1}\right)+R_{s}\left(z_{1}, \ldots, z_{2 m} ; x_{1}, \ldots, x_{n}\right) \tag{2.3}\\
(k=1, \ldots, m ; \quad s=1, \ldots, n)
\end{gather*}
$$

where the $a_{2 \mu}{ }^{(2 k)}$ are constants, $P_{2 \mu}{ }^{(2 k)}$ are linear forms of the variables $x_{1}, \ldots, x_{n} ; \varphi_{s}(2 k), \varphi_{s i}$ are holomerphic functions, cancelling themelves for $z_{1}=z_{3}=\ldots{ }^{n}=z_{s i}=0 ; \quad Q^{(2 k)}$ are quedratic forms of the quantities
 $x_{1}, \ldots, x_{n} ; R$, which do not include temms of these variables of order iower than the third.

We shall consider the function $\psi_{s}{ }^{(2 \mu)}\left(z_{1}, z_{3}, \ldots, z_{2 m-1}\right)$, determined from Equations

$$
\begin{gather*}
\sum_{s=1}^{n}\left(p_{s i}+\Phi_{s i}\right){\psi_{s}}^{(2 \mu)}+\left[1+\left(1-\sum_{v=1}^{m} a_{2 \mu}^{(2 \nu)}\right) z_{2 \mu-1}\right] \varphi_{i}^{(2 \mu)}=0 \tag{2.4}\\
(i=1, \ldots, n ; \mu=1, \ldots, m)
\end{gather*}
$$

*) This can be obtained by substituting

$$
z_{2 k}=\bar{z}_{2 k}+\psi_{2 k}\left(z_{1}, z_{3}, \ldots, z_{2 m-1}\right), \quad x_{3}=x_{3}+\Psi_{s}\left(z_{1}, z_{3}, \ldots, z_{2 m-1}\right)
$$

Where $\Psi_{2 k}$ and φ_{s} satisfy Equations $(k=1, \ldots, m, s=1, \ldots, n)$

$$
\Psi_{2 k}+Z_{2 k-1}\left(z_{1}, z_{3}, \ldots, z_{2 m-1} ; \quad \psi_{2}, \varphi_{4}, \ldots, \Psi_{2 m} ; \quad \varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)=0
$$

$$
p_{s 1} x_{1}+\ldots+p_{\mathrm{sn}} x_{n}+X_{s}\left(z_{1}, z_{3}, \ldots, z_{3 m-1} ; \psi_{2}, \psi_{4}, \ldots, \psi_{2 m} ; \varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)=0
$$

It is evident that for every fixed μ, the system of equations (2.4) yields an unambiguous determination of the functions $\left.\psi_{s}^{(2 \mu)} / s=1 \ldots n\right)$, which vanish for the values $z_{1}=z_{3}=\ldots=z_{2 m-1}=0$.

We shall now compose a Liapunov V function of the form

$$
\begin{gather*}
V=\sum_{\mu=1}^{m}\left[1+\left(1-\sum_{k=1}^{m} a_{2 \mu}{ }^{(2 k)}\right) z_{2 \mu-1}\right] z_{2 \mu}+ \\
+\sum_{\mu=1}^{m} \sum_{k=1}^{m} U_{2 \mu}{ }^{(2 k)} z_{2 \mu}+\sum_{k=1}^{m} W^{(2 k)}+\sum_{s=1}^{n} \sum_{k=1}^{m} x_{s} \psi_{s}^{(2 k)} \tag{2.5}
\end{gather*}
$$

Here $U_{2 \mu}{ }^{(2 k)}$ and $W^{(2 k)}$ are, respectively, linear and quadratic forms, determined ${ }^{2 \mu}$ by the equations (*)

$$
\begin{gather*}
\sum_{s=1}^{n}\left(p_{s 1} x_{1}+\ldots+p_{s n} x_{n}\right) \frac{\partial U_{2 \mu}^{(2 k)}}{\partial x_{s}}+P_{2 \mu}^{(2 k)}=-\sum_{s=1}^{n} x_{s}\left(\frac{\partial \psi_{s}^{(2 k)}}{\partial z_{2 \mu-1}}\right)_{0} \tag{2.6}\\
\sum_{s=1}^{n}\left(p_{s 1} x_{1}+\cdots+p_{s n} x_{n}\right) \frac{\partial W^{(2 k)}}{\partial x_{s}}+Q^{(2 k)}=\sum_{s=1}^{n} x_{s}^{2}
\end{gather*}
$$

Calculating the total derivative of the function V with respect to t, on the basis of Equation (2.1) and taking into consideration (2.3), (2.4) and (2.6), we get

$$
\begin{align*}
& \frac{d^{d} V}{d t}=\sum_{\mu-1}^{m} z_{2 \mu}^{2}+m \sum_{s=1}^{n} x_{s}^{2}+S \tag{2.7}\\
& S=\sum_{\mu=1}^{m}\left\{\left(1-\sum_{k=1}^{m} a_{2 \mu}^{(2 k)}\right) z_{2 \mu-1}\left[Q^{(2 \mu)}-1-\sum_{\nu=1}^{m}\left(P_{2 \nu}^{(2 \mu)} z_{2 \nu}+a_{2 v}^{(2 \mu)} z_{\nu 2}^{2}\right)\right]\right\}+ \\
& +\sum_{\mu=1}^{m}\left[1+\left(1-\sum_{k=1}^{m} a_{2 \mu}^{(2 k)}\right) z_{2 \mu-1}\right] R^{(2 \mu)}+\sum_{k=1}^{m} \sum_{\mu=1}^{m} U_{2 \mu}^{(2 k)} Z_{2 k}+ \tag{2.8}\\
& +\sum_{\mu=1}^{m}\left(1-\sum_{k=1}^{m} a_{2 \mu}^{(2 k)}\right) z_{2 \mu} Z_{2 \mu-1}+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\partial W^{(2 k)}}{\partial x_{s}} X_{s}+ \\
& +\sum_{k=1}^{m} \sum_{\mu=1}^{m} \sum_{s=1}^{n} z_{2 \mu} \frac{\partial U_{2 \mu}^{(2 k)}}{\partial x_{s}} X_{s}+\sum_{k=1}^{m} \sum_{\mu=1}^{m} \sum_{s=1}^{n} x_{s} \frac{\partial \psi_{s}{ }^{(2 k)}}{\partial z_{2 \mu-1}} Z_{2 \mu-1}+ \\
& +\sum_{k=1}^{m} \sum_{s=1}^{n} \psi_{s}{ }^{(2 k)} R_{s}+\sum_{k=1}^{m} \sum_{\mu=1}^{m} \sum_{s=1}^{n} x_{s} z_{2 \mu}\left[\frac{\partial \psi_{s}^{(2 k)}}{\partial z_{2 \mu-1}}-\left(\frac{\partial \psi_{s}^{(2 k)}}{\partial z_{2 \mu-1}}\right){ }_{0}\right]
\end{align*}
$$

From Equations (2.7) and (2.8) there follows that the function V satisfies the instability theorem of Chetaev [4]. Therefore, for the conditions given above, solution (2.2) and therefore solution (1.4) are unstable.
*) The subscript zero, in the last term of the first equation of (2.6), denotes that the derivative is taken at the point $z_{1}=z_{3}=\ldots=z_{2 m-1}=0$

BIBLIOGRAPHY

1. Liapunov, A.M., Issledovanie odnogo $1 z$ obobennyich sluchaev zadachi ob ustoichivosti dvizhenila (Analysis of a Particular Case of the Problem of Stability of Motion). Izd.LaU, 1963.
2, Kamenkov, G.V., Ob ustoichivosti dvizheniia (On the stability of motion) Trudy kazan.aviats.Inst., Ne 9, 1939.
2. Aban'shin, A.M., K ustolchivosti ustanovivshegosia dvizhenila v sluchae k nulevykh kornei opredeliaiushchego uravnenila (On the stability of the steady state motion in the case of a characteristic equation having k roots equal to zero). Vest.leningr.gos.Univ., N 13, 1960. Series of Mathematics, Mechanics and Aatronomy N 3.
3. Chetaev, N.G., Ustoichivost' dvizhenila (Stability of Motion). Gostekhizdat, M., 1953.
